

Plasma-SeqSensei™

Breast Cancer IVD Kit

Istruzioni per l'uso Febbraio 2022

TEST IN VITRO/Per uso diagnostico in vitro

Glossario dei simboli								
•••	Produttore	\subseteq	Utilizzare entro					
REF	Riferimento di catalogo	LOT	Numero di lotto					
Σ	Contenuto sufficiente per <n> test</n>	\triangle	Attenzione					
1	Limiti di temperatura	i	Consultare le istruzioni per l'uso					
IVD	Diagnostica in vitro	②	Non riutilizzare					
类	Conservare al riparo dalla luce	Ť	Conservare a secco					
<u></u>	Limiti umidità							

Sommario

1	Finalità	3
2	Introduzione	4
3	Principio del test	5
4	Regioni di copertura	7
5	Interpretazione dei risultati delle varianti	8
6	Limitazioni	9
7 7.1 7.2 7.3 7.4	Reagenti, consumabili e apparecchiature Materiale in dotazione Materiale non in dotazione Consumabili Apparecchiatura	11 13 14
8 8.1 8.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4	Manipolazione e conservazione	17 18 18 19
9 9.1 9.2 9.3 9.4 9.5 9.6	Flusso di lavoro UID PCR (PCR multiplex) Purificazione della PCR UID Index PCR Purificazione dell'Index PCR CQ libreria (Bioanalyzer). Sequenziamento su Illumina NextSeq™ 500/550	24 30 34 39
10	Assistenza tecnica	50
11.1 11.2 11.3 11.4 11.5	Caratteristiche delle prestazioni Sensibilità analitica Specificità analitica Precisione/Ripetibilità Intervallo di misurazione/Linearità Sostanze interferenti	51 51 52
12	Glossario e terminologia	53
13	Bibliografia	55
14	Diritti d'autore e marchi commerciali	56

1 Finalità

Plasma-SeqSensei™ (PSS) Breast Cancer IVD Kit è un'analisi di sequenziamento quantitativo in parallelo (Next-Generation Sequencing, NGS) destinata al rilevamento e all'identificazione delle mutazioni nei geni bersaglio AKT1, ERBB2, ESR1, KRAS, PIK3CA e TP53 nel DNA libero circolante (cfDNA) umano isolato dal plasma sanguigno di pazienti con tumore al seno per rilevare residui minimi della malattia, sorveglianza delle recidive e monitoraggio della risposta neo-adiuvante nei pazienti.

II PSS Breast Cancer IVD Kit deve essere utilizzato esclusivamente in combinazione con il software PSS IVD per conseguire l'uso previsto e deve essere eseguito da personale addestrato in un ambiente di laboratorio professionale. Le informazioni generate non dovrebbero mai essere l'unico fattore determinante per l'assunzione di decisioni mediche.

Nota: Il PSS Breast Cancer IVD Kit non è destinato a essere utilizzato nello screening, per la diagnosi del cancro o come diagnostica complementare (Companion Diagnostics).

2 Introduzione

Il tumore al seno è il tipo di cancro più frequentemente diagnosticato e la principale causa di morte per cancro tra le donne in tutto il mondo (1). Negli ultimi anni, le ampie ricerche condotte sulla chirurgia curativa, sulla terapia neo-adiuvante e sulla terapia mirata hanno portato a un aumento del tasso di sopravvivenza (2).

Le cellule tumorali in fase di apoptosi, necrosi o secrezione metabolica rilasciano piccole quantità del loro DNA nel flusso sanguigno. La frazione tumorale specifica del cfDNA è chiamata DNA tumorale circolante (ctDNA) e contiene le informazioni genetiche del tumore primario e delle metastasi. Una vasta serie di studi di ricerca e trial ha dimostrato l'applicazione clinica della profilazione del ctDNA in fasi diverse della terapia oncologica, compresa la selezione della terapia, la prognosi e il monitoraggio (3).

Sono disponibili diverse tecnologie basate sul sequenziamento in parallelo (NGS) per il rilevamento del ctDNA. Tuttavia, a causa di bias/errori di sequenziamento e PCR, la maggior parte di esse non è indicata per il rilevamento di varianti rare. Plasma-SeqSensei™ è una nuova tecnologia basata su NGS che implementa identificatori molecolari univoci (UID) nel flusso di lavoro di sequenziamento. Ne consegue una significativa riduzione degli errori che comporta una sensibilità ultra-alta della tecnologia PSS (4).

3 Principio del test

Il PSS Breast Cancer IVD Kit rileva mutazioni genetiche nel ctDNA isolato dal plasma sanguigno. Per accrescere la sensibilità del metodo, i frammenti di DNA vengono etichettati usando gli UID durante la prima fase di amplificazione. Ciò porta alla formazione di famiglie UID che consistono in varie copie di ciascun UID assegnato. Durante la seconda fase di amplificazione, a ciascun membro di una famiglia UID viene inoltre assegnato un codice a barre specifico per pozzetto e per piastra (4). Ai fini della validità, viene incluso un controllo di input interno per la quantificazione (Quantispike) oltre ai controlli esterni positivi e negativi in ogni corsa.

Il flusso di lavoro include l'analisi automatizzata dei dati e la generazione di referti utilizzando il software Plasma-SeqSensei™ IVD. Il software quantifica la quantità di cfDNA e identifica i supermutanti, ovvero famiglie UID in cui almeno il 90 % di tutti i frammenti PCR contiene mutazioni identiche. Questo concetto permette di discriminare i mutanti reali dagli artefatti della PCR o del sequenziamento presenti solo in un numero molto basso di componenti della famiglia UID. Il processo fondamentale della tecnologia PSS viene visualizzato nella Figura 1.



Figura 1: Principio della tecnologia PSS

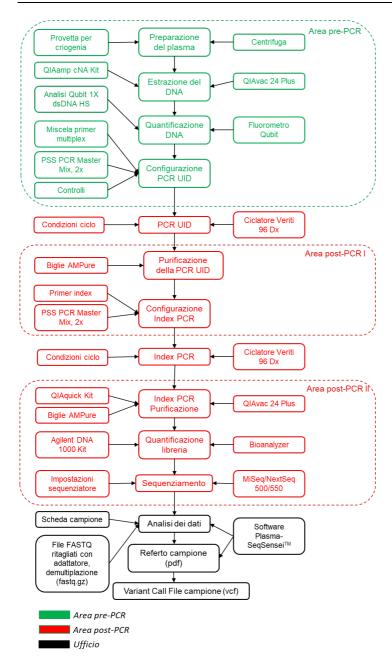


Figura 2: Flusso di lavoro del metodo Plasma-SeqSensei™

4 Regioni di copertura

Tabella 1: Regioni di copertura di PSS Breast Cancer IVD Kit

Gene	Trascrizione*	Inizio sequenza codificante	Fine sequenza codificante	Inizio ammino- acido	Fine ammino- acido
AKT1	ENST00000554581	47	69	17	23
ERBB2	ENST00000269571	907	947	303	315
ERBB2	ENST00000269571	2.258	2.307	754	769
ERBB2	ENST00000269571	2.308	2.360	770	786
ESR1	ENST00000440973	1.108	1.143	370	381
ESR1	ENST00000440973	1.378	1.420	460	473
ESR1	ENST00000440973	1.583	1.614	529	538
KRAS	ENST00000256078	8	43	4	14
PIK3CA	ENST00000263967	254	278	86	92
PIK3CA	ENST00000263967	329	352	111	117
PIK3CA	ENST00000263967	353	367	119	122
PIK3CA	ENST00000263967	1.033	1.058	345	352
PIK3CA	ENST00000263967	1.085	1.115	363	371
PIK3CA	ENST00000263967	1.252	1.264	418	421
PIK3CA	ENST00000263967	1.348	1.387	450	462
PIK3CA	ENST00000263967	1.611	1.659	538	553
PIK3CA	ENST00000263967	2.138	2.184	714	728
PIK3CA	ENST00000263967	3.118	3.169	1.040	1.056
TP53	ENST00000269305	144	232	49	77
TP53	ENST00000269305	293	375	99	125
TP53	ENST00000269305	376	423	126	141
TP53	ENST00000269305	451	537	151	179
TP53	ENST00000269305	574	659	192	219
TP53	ENST00000269305	695	782	233	260
TP53	ENST00000269305	783	856	262	285
TP53	ENST00000269305	888	919	297	306
TP53	ENST00000269305	920	993	308	331
TP53	ENST00000269305	994	1.080	332	360

^{*} Fonte sequenza: database Ensemble

5 Interpretazione dei risultati delle varianti

L'analisi è concepita per rilevare le mutazioni somatiche nel ctDNA derivato dal plasma. I risultati di questo test possono servire come aggiunta al checkup del medico ordinante e come tali devono essere interpretati nel contesto dei risultati clinici, della patologia tumorale e di altri dati di laboratorio da parte di un professionista sanitario qualificato.

Frequenze di mutazione:

Le frequenze di mutazione sono segnalate sia come MAF (frazione di allele mutante) che come numero assoluto di MM (molecole mutanti). La MAF indica la proporzione del ctDNA mutante rispetto al cfDNA totale. La MAF consente di confermare la presenza o l'assenza di mutazioni. Tuttavia, potrebbe non rispecchiare il carico tumorale complessivo, poiché la proporzione di ctDNA rispetto al cfDNA totale in un campione può essere influenzata da vari fattori tra cui la posizione anatomica del tumore, il ricambio delle cellule tumorali, la vascolarizzazione, la terapia, le procedure di prelievo del sangue, la manipolazione del campione e le caratteristiche cliniche del paziente non correlate allo stato del tumore (5). Il numero assoluto di MM rilevato per una data variante rappresenta il numero totale di molecole rilevate in un campione e può fornire indicazioni dirette sulle caratteristiche della biologia tumorale univoca di ciascun paziente (5, 6).

Varianti segnalate:

Vengono segnalate le varianti con un impatto funzionale caratterizzato, probabile o previsto. Si fondano su database disponibili al pubblico come COSMIC (7) e/o sono riportati nella letteratura scientifica peer-reviewed (6, 8, 9). Inoltre, le varianti di sospetta origine germinale, come indicato da una MAF osservata tra il 40 % e il 60 % o una MAF osservata superiore al 90 %, vengono illustrate in una tabella separata sul referto.

6 Limitazioni

Le sospette mutazioni germinali sono escluse dalla segnalazione in base ai valori MAF osservati e alle informazioni disponibili al pubblico. Tuttavia, questo test non può determinare definitivamente se queste mutazioni siano di origine germinale senza l'analisi di cellule sane corrispondenti. Inoltre, le mutazioni riportate per alcuni geni in un piccolo sottoinsieme di pazienti possono essere il risultato di un'ematopoiesi clonale e dovrebbero essere giudicate attraverso l'analisi di cellule ematiche corrispondenti. La rilevabilità del ctDNA dipende da vari fattori tra cui il carico del tumore, la biologia del tumore, le condizioni di raccolta del campione, l'eterogeneità del campionamento e le caratteristiche cliniche. Il test ha dimostrato di avere variazioni basse ma rilevabili a seconda del contesto della sequenza, particolarmente in campioni con conteggi di molecole target intorno al cutoff.

Il PSS Breast Cancer IVD Kit è stato testato per rilevare le seguenti tipologie di mutazioni somatiche: variazioni nel singolo nucleotide (Single-Nucleotide Variation, SNVs), inserzioni (fino a 27 nucleotidi), delezioni (fino a 48 nucleotidi) e varianti di delezione/inserzione (fino a 17 nucleotidi).

7 Reagenti, consumabili e apparecchiature

Il PSS Breast Cancer IVD Kit contiene due ulteriori confezioni e una sacca. Una delle confezioni deve essere conservata nel laboratorio pre-PCR mentre l'altra confezione e la sacca contenente la PSS Index Primer Plate deve essere conservata nel laboratorio post-PCR. Si raccomanda caldamente di suddividere la confezione del kit all'arrivo su due laboratori distinti per ridurre al minimo il rischio di contaminazione dei reagenti. La confezione pre-PCR è destinata all'uso in un laboratorio dove non viene manipolato DNA amplificato. La confezione post-PCR e la sacca sono destinate all'uso in un laboratorio dove vengono aperte e manipolate le fiale/piastre di reazione PCR.

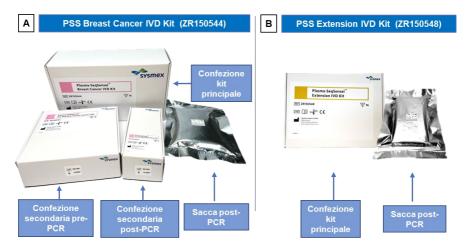


Figura 3: Immagini delle confezioni Plasma-SeqSensei™ Breast Cancer IVD Kit con sacca (A) e della confezione e sacca Plasma-SeqSensei™ Extension IVD Kit (B) con i rispettivi luoghi di conservazione (aree pre- e post-PCR).

7.1 Materiale in dotazione

Il materiale in dotazione è essenziale per l'analisi e non può essere sostituito da altri prodotti.

Il PSS Breast Cancer IVD Kit deve essere conservato a una temperatura compresa tra -15 °C e -30 °C quando non viene utilizzato.

Dopo l'apertura, i reagenti mantengono la propria stabilità per 30 giorni o fino alla data di scadenza, a seconda dell'evento che si verifica per primo.

Tabella 2: Materiale in dotazione al PSS Breast Cancer IVD Kit (ZR150544)

Confezione	Nome (colore tappo)	N. cat.	Provette	Cicli di congelamento- scongelamento	Temperatura di conservazione
	PSS Breast Cancer Mpx A (blu)	ZR851013	4	2	Da -15 °C a -30 °C
	PSS Breast Cancer Mpx B (giallo)	ZR851014	4	2	Da -15 °C a -30 °C
Confezione	PSS Breast Cancer Positive Control (rosso)	ZR855006	4	2	Da -15 °C a -30 °C
pre-PCR	PSS No Template Control (trasparente)	ZR854002	4	2	Da -15 °C a -30 °C
	PSS Quantispike (verde)	ZR856001	4	2	Da -15 °C a -30 °C
	PSS PCR Master Mix v2, 2x (nero)	ZR850001	4	4	Da -15 °C a -30 °C
Sacca post- PCR	PSS Index Primer Plate IND34 ^{1,2}	ZR852004	1	N/D	Da -15 °C a -30 °C
Confezione	PSS PCR Master Mix v2, 2x (nero)	ZR850001	2	4	Da -15 °C a -30 °C
post-PCR	Water, nuclease-free (bianco)	ZR224006	1	N/D	Da -15 °C a -30 °C

¹ Proteggere le piastre dall'esposizione alla luce. Dopo il primo utilizzo, conservare la PSS Index Primer Plate a una temperatura compresa tra 2 °C e 8 °C.

Nel caso in cui vengano analizzati più di 16 campioni nella stessa corsa di sequenziamento, è necessario ordinare un Plasma-SeqSensei™ Extension IVD Kit.

² La PSS Index Primer Plate IND34 è definita anche piastra A nel flusso di lavoro e nel software PSS IVD.

Tabella 3: Materiale in dotazione al PSS Extension IVD Kit (ZR150548)

Confezione	onfezione Nome (colore N. cat. Provette congelar		Cicli di congelamento- scongelamento	Temperatura di conservazione	
Sacca post- PCR	PSS Index Primer Plate IND35 ^{1,2}	ZR852005	1	N/D	Da -15 °C a -30 °C

¹ Proteggere le piastre dall'esposizione alla luce. Dopo il primo utilizzo, conservare la PSS Index Primer Plate a una temperatura compresa tra 2 °C e 8 °C.

Tabella 4: Composizione del materiale in dotazione

Nome	Composizione
PSS Breast Cancer Mpx A	Primer Tris EDTA Buffer
PSS Breast Cancer Mpx B	Primer Tris EDTA Buffer
PSS Breast Cancer Positive Control	Double-stranded synthetic DNA wild-type/mutant Tris EDTA Buffer Carrier RNA
PSS No Template Control	Tris EDTA Buffer
PSS Quantispike	Double-stranded synthetic DNA Tris EDTA Buffer Carrier RNA
PSS Index Primer Plate	Index primers (well-specific) Bromophenol blue
PSS PCR Master Mix v2, 2x	Hot-Start Polymerase PCR Buffer dNTPs
Water, nuclease-free	Nuclease-free water, molecular biology grade

Tutti i componenti liquidi e disidratati del kit sono esclusivamente monouso. Ogni pozzetto della Index Primer Plate è esclusivamente monouso.

Le provette contenenti i reagenti utilizzano reagenti riutilizzabili che possono essere scongelati e ricongelati in base alla Tabella 2 per estrarre il liquido per le fasi del flusso di lavoro indicate.

² La PSS Index Primer Plate IND35 è definita anche piastra B nel flusso di lavoro e nel software PSS IVD.

7.2 Materiale non in dotazione

I prodotti laddove i dettagli sul produttore/fornitore e il numero d'ordine sono forniti nelle Tabella 5, Tabella 6 e Tabella 7, sono essenziali per l'analisi e non devono essere scambiati con prodotti di qualità e/o con proprietà paragonabili.

Tabella 5: Materiale non in dotazione al PSS Breast Cancer IVD Kit

Materiale	Prodotti				
Reagenti e kit	Etanolo (EtOH) ≥ 99,8 %, p.a.				
	RNase and DNase free distilled water				
	* Agencourt® AMPure® XP, Beckman Coulter, n. A63881				
	* Buffer EB (tampone a eluizione), QIAGEN, n. 19086				
	* QIAquick® PCR Purification Kit, QIAGEN, n. 28106				
	* Buffer PB, QIAGEN, n. 19066				
	* DNA 1000 Kit, Agilent, n. 5067-1504 Chip microfluidici Reagenti Chip Priming Station, Agilent, n. 5065-4401				
	* Reagenti DNA 1000, Agilent, n. 5067-1505				
	* Kit di analisi Qubit™ 1X dsDNA HS, Thermo Fisher, n. Q33230 (100 rxns) o n. Q33231 (500 rxns)				
	* Provette per analisi Qubit™, Thermo Fisher, n. Q32856				
	Idrossido di sodio (NaOH), 1 M				
	Soluzione di idrocloruro Trizma [®] pH 7,0, 1 M				
	* NextSeq™ 500/550 Mid Output Kit v2.5 (150 cicli), Illumina, n. 20024904 Componenti del kit: ■ Cartuccia reagenti Mid Output (150 cicli), n. 15057940 ■ Cartuccia per celle di flusso Mid Output, n. 20022409 ■ Cartuccia tamponi, n. 15057941 ■ Tampone di ibridazione (HT1), n. 15058251				
	* NextSeq™ 500/550 High Output Kit v2.5 (150 cicli), Illumina, n. 20024907				
	Componenti del kit:				
	 Cartuccia reagenti High Output (150 cicli), n. 15057931 Cartuccia per celle di flusso High Output, n. 20022408 Cartuccia tamponi, n. 15057941 Tampone di ibridazione (HT1), n. 15058251 				
* Componenti co					

^{*} Componenti essenziali; non devono essere scambiati con prodotti di qualità e/o proprietà paragonabili.

7.3 Consumabili

Tabella 6: Consumabili necessari per PSS Breast Cancer IVD Kit

Attrezzatura di laboratorio	Prodotto
Puntali pipette/pipette sierologiche	Puntali per pipette sterili resistenti all'aerosol con filtri da 2, 10, 20, 200, 1.000 μl
Provette di reazione	Provette da 15, 5, 2, 1,5 ml
	* Provette per DNA LoBind® DNA da 1,5 ml, Eppendorf, n. 0030108051
	Strisce di provette con tappi (1,3 ml)
Piastre a 96 pozzetti	* Piastra per PCR a 96 pozzetti, segmentata, con mezzo bordo rialzato (semi-skirted), Thermo Scientific, n. AB0900 o n. AB2400 (necessaria per PCR)
	Piastra per PCR a 96 pozzetti Multiply® senza bordo laterale rialzato, Sarstedt (opzionale, per diluizioni)
Foglio sigillante per piastre a 96 pozzetti	Foglio in alluminio
	Pellicola adesiva trasparente
Apparecchiatura di sicurezza	Camici, manicotti, occhiali, copriscarpa monouso, guanti protettivi
Varie	Contenitori per reagenti monouso (25 ml)
	* Prolunghe per provette da 3 ml per collettori a vuoto QIAvac, Qiagen, n. 19587
	* VacConnectors (500) per collettori a vuoto QIAvac, Qiagen, n. 19407

^{*} Componenti essenziali; non devono essere scambiati con prodotti di qualità e/o proprietà paragonabili.

7.4 Apparecchiatura

Tabella 7: Apparecchiatura necessaria per PSS Breast Cancer IVD Kit

Attrezzatura di laboratorio	Prodotto				
Strumenti elettronici	Centrifuga per provette da 1,5/2 ml, con capacità di 20.000 × g, rotore ad angolo fisso Centrifuga per provette da 15/50 ml, con capacità di 7.197 × g,				
	rotore ad angolo fisso Centrifuga per piastre a 96 pozzetti, con capacità di 1.000 × g, rotore ad angolo fisso				
	Minicentrifuga, potenza ≤ 2.000 × g				
	Vortexer con inserti per provette e piastre a 96 pozzetti				
	Vortexer con inserto per chip per DNA Agilent, potenza 2.400 giri/min.				
	Congelatore, da -15 °C a -30 °C				
	Frigorifero, da 2 °C a 8 °C				
	Stazione di lavoro DNA/cappa per PCR				
	Cappa aspirante (fortemente raccomandata)				
	Cappe di sicurezza biologica di Classe II (fortemente raccomandate)				
	Qiagen Connecting System				
	QIAvac 24 Plus System				
	Pompa a vuoto (230 V, 50 Hz)				
	Termociclatore Veriti Dx a 96 pozzetti o equivalente■				
	Agilent 2100 Bioanalyzer System				
	Illumina NextSeq™ 500/550				
	2100 Expert Software, Agilent Technologies				
Pipette	Pipetta 1.000 μl, 200 μl, 20 μl, 10 μl, 2 μl				
	Pipetta multicanale (12 canali) 200 μl, 20 μl				
	Pipettatore da 5 a 100 ml				
Rack	Rack per provette da 50 ml, 15 ml, 5 ml, 1,5/2 ml				
	Rack per catena di provette				
	Rack da 96 pozzetti				
	Piastra magnetica super 96S, Alpaqua® SKU: A001322				
	Magnete DynaMag™-2, Thermo Fisher, n. 12321D				

7 Reagenti, consumabili e apparecchiature

Attrezzatura di laboratorio	Prodotto
	Scatole per conservazione in congelatore
Varie	Applicatore di pellicola
	Contasecondi

L'equivalenza deve essere determinata dall'utente e l'uso di altri dispositivi per termociclatori avviene a rischio dell'utente.

8 Conservazione e manipolazione

8.1 Condizioni di spedizione

Il prodotto sarà spedito su ghiaccio secco. All'arrivo, verificare se il ghiaccio secco è ancora presente nella confezione e i reagenti sono congelati.

8.2 Precauzioni generali per la manipolazione

Assicurarsi che la temperatura e l'umidità all'interno del locale restino comprese tra 15 °C e 30 °C e tra il 20 % e l'85 %, rispettivamente (riduzione del rischio di condensa/evaporazione).

Non mangiare, bere o fumare in laboratorio. Effettuare la manutenzione delle attrezzature in base alle istruzioni del produttore.

Decontaminare e smaltire tutti i reagenti, i campioni e le relative scorte in conformità ai regolamenti governativi locali. Per ottenere risultati accurati e riproducibili è essenziale evitare la contaminazione con DNA estraneo, soprattutto con i prodotti della PCR provenienti da piastre utilizzate in precedenza. I prodotti amplificati da esperimenti precedenti costituiscono la fonte più comune di contaminazione del DNA.

I reagenti forniti appaiono visivamente trasparenti e incolori, ad eccezione della PSS Index Primer Plate che contiene blu di bromofenolo in tutti i pozzetti (colore blu). Se si verificano variazioni nell'aspetto del materiale o si sospetta un degrado dovuto a conservazione errata che può influenzare le prestazioni dell'analisi, rivolgersi all'assistenza tecnica (▶ capitolo 10 Assistenza tecnica, pagina 50/58).

8.3 Avvisi e precauzioni

Questo prodotto non contiene materiale pericoloso.

Le schede di sicurezza dei materiali sono disponibili all'indirizzo www.svsmex-inostics.com.

In caso incidenti gravi che si verifichino in relazione a PSS Breast Cancer IVD Kit, segnalarli immediatamente al produttore e all'autorità competente dello Stato membro in cui risiede l'utente e/o il paziente.

8.3.1. Misure specifiche

Misure di primo soccorso

- Consiglio generico: in caso di effetti persistenti, consultare un medico. Rimuovere immediatamente indumenti e calzature contaminati e lavarli accuratamente prima di riutilizzarli.
- In caso di aspirazione: allontanare la persona dalla zona interessata. Accertarsi che sia presente aria fresca.
- In caso di contatto con la pelle: lavare l'area interessata con sapone e abbondante acqua.
- In caso di contatto con gli occhi: rimuovere le lenti a contatto. Sciacquare accuratamente l'occhio sotto l'acqua corrente tenendo le palpebre ben aperte per almeno 10-15 minuti. Proteggere l'occhio non colpito.
- In caso di ingestione: rivolgersi immediatamente a un medico. Non indurre il vomito. Non somministrare nulla per bocca a una persona in stato di incoscienza.

8.3.2 Manipolazione e conservazione

Misure generali di protezione e igiene

Non mangiare, bere o fumare in laboratorio e assicurarsi che venga utilizzata una buona tecnica di lavaggio delle mani prima di uscire. Non inalare i vapori. Evitare il contatto con gli occhi e la pelle. Rimuovere immediatamente gli indumenti sporchi o inzuppati.

Precauzioni per una manipolazione in sicurezza

I rischi di manipolazione del prodotto devono essere ridotti al minimo adottando le misure di protezione e le azioni preventive appropriate. Il processo di lavoro deve essere progettato per escludere il rilascio di sostanze pericolose o il contatto con la pelle, per quanto possibile.

Consigli sulla protezione contro incendi ed esplosioni

Non sono necessarie misure speciali.

Condizioni per una conservazione sicura, comprese eventuali incompatibilità

Tenere il contenitore ben chiuso in un luogo asciutto e ben ventilato. I contenitori aperti devono essere richiusi con cura e tenuti in posizione verticale per evitare perdite.

8.3.3 Precauzioni per la manipolazione dei reagenti

Per garantire un uso e uno smaltimento corretti e per evitare la contaminazione dei reagenti, seguire le precauzioni elencate di seguito:

- Non utilizzare reagenti scaduti o non conservati correttamente.
- Preparare i reagenti seguendo le istruzioni fornite.
- I reagenti sono destinati all'uso esclusivo con gli altri reagenti dello stesso kit.
- I reagenti di kit o lotti diversi non possono essere raggruppati o scambiati.
- Registrare la data di apertura e contrassegnare le provette dopo ogni uso, per garantire che i reagenti non vengano utilizzati dopo la

- data di scadenza successiva all'apertura o dopo il numero raccomandato di cicli di congelamento-scongelamento.
- Evitare la contaminazione dei reagenti cambiando spesso i guanti.
 Cambiare sempre i guanti tra la manipolazione dei reagenti e dei campioni.
- Smaltire i reagenti non utilizzati e i rifiuti in conformità alle normative ambientali nazionali, regionali e locali.

8.3.4 Precauzioni relative alla sicurezza e alla contaminazione

Seguire le precauzioni elencate qui sotto per mantenere l'ambiente di lavoro del laboratorio al riparo da contaminazioni del DNA e garantire la sicurezza del personale:

- Separare le aree di lavoro utilizzate per le operazioni di laboratorio pre-PCR e post-PCR e rispettare un flusso di lavoro unidirezionale da "pulito" (aree pre-amplificazione) a "sporco" (aree postamplificazione).
- Accertarsi che l'apparecchiatura dedicata (comprese le pipette) come scorte, reagenti, taniche del liquido di scarto a rischio biologico e manuali di laboratorio siano presenti in ciascuna area di lavoro. Non trasferire mai questi materiali tra le aree di lavoro pre-PCR e post-PCR. Si raccomanda di utilizzare la codifica cromatica o l'etichettatura dell'attrezzatura, delle scorte e dei reagenti per identificare quelli che appartengono a una determinata area.
- Indossare adeguati dispositivi di protezione individuale durante tutta la procedura.
 - Indossare sempre un camice da laboratorio (preferibilmente monouso) e guanti senza polvere monouso quando si lavora nei laboratori pre-PCR e post-PCR.
 - Cambiare spesso i guanti tra la manipolazione di reagenti e campioni e dopo che la pelle è venuta a contatto con la superficie esterna dei guanti per impedire la contaminazione.
 - Indossare occhiali protettivi almeno durante la preparazione del plasma, l'estrazione del DNA e la purificazione del prodotto PCR con QIAquick[®].

- Indossare copriscarpe monouso o cambiare le calzature, tra i laboratori pre-PCR e post-PCR, e indossare manicotti di protezione per le braccia monouso (necessari nel laboratorio pre-PCR e raccomandati nel laboratorio post-PCR, soprattutto per la purificazione della PCR UID e l'Index PCR).
- Quando si esce dalle aree di laboratorio pre-PCR e post-PCR, rimuovere e smaltire i dispositivi di protezione individuale.
- Manipolare tutti i campioni come materiale potenzialmente infettivo. In caso di fuoriuscita, si raccomanda di pulire l'area interessata in primo luogo con un detergente/disinfettante e acqua, quindi con una soluzione di ipoclorito di sodio allo 0,5 % (candeggina) preparata utilizzando acqua deionizzata.

Nota: La concentrazione dell'ipoclorito di sodio nella candeggina liquida reperibile in commercio per uso domestico (ad es. marca Clorox) è generalmente pari al 5,25 %. Una diluizione 1:10 di candeggina per uso domestico consente di ottenere una soluzione con lo 0,5 % di ipoclorito di sodio.

- Utilizzare cappe per PCR dedicate per le fasi di pipettamento.
- Dopo l'uso, pulire le cappe per PCR con un disinfettante a base di composti di ammonio quaternario (come RHEOSEPT-WD plus o equivalente) seguito da un prodotto progettato per rimuovere gli acidi nucleici e le nucleasi (come Roti[®] privo di acidi nucleici o equivalente).
- Dopo l'uso, pulire le aree di lavoro per la PCR con un prodotto apposito per la rimozione degli acidi nucleici e delle nucleasi (come Roti[®] privo di acidi nucleici o equivalente).
- Decontaminare la cappa di sicurezza, le aree di lavoro per PCR e gli strumenti del laboratorio (pipette, rack per provette e altre attrezzature) con raggi ultravioletti (UV) dopo l'uso. Per garantire l'efficacia delle radiazioni UV, accertarsi che le lampade UV vengano pulite regolarmente per evitare l'accumulo di residui che ne ridurrebbero l'efficienza.
- Utilizzare solo puntali per pipetta sterili resistenti all'aerosol, con filtri (con certificato di lotto, privi di RNAsi e DNAsi e di sostanze pirogene).
- Utilizzare solamente reagenti e provette per PCR.

- Tenere aperta solamente una provetta del campione o del reagente alla volta.
- Per prevenire la contaminazione di soluzioni di reagenti per uso multiplo, preparare delle aliquote di lavoro in conformità alle istruzioni ed evitare il pipettamento diretto.

9 Flusso di lavoro

PSS Breast Cancer IVD Kit utilizza cfDNA quantificato da plasma per rilevare il ctDNA. Prima di avviare il flusso di lavoro della libreria (Figura 4), come illustrato nelle presenti IFU, assicurarsi che il flusso di lavoro di preparazione del campione sia completato come descritto nella guida alla preparazione del campione di Sysmex Inostics.

Inoltre, la prima parte delle IFU del software IVD Plasma-SeqSensei™, la pianificazione della corsa, deve essere completata. Se occorre diluire i campioni perché il relativo contenuto di DNA è troppo elevato, fare riferimento al ▶ capitolo 9.1 UID PCR (PCR multiplex), pagina 24/58, di queste IFU.

Figura 4 descrive il processo, comprese le singole fasi del flusso di lavoro, nonché a quali IFU attenersi per l'intero processo Plasma-SeqSensei™.

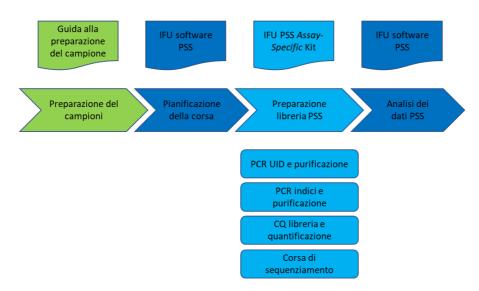


Figura 4: Processo Plasma-SeqSensei™, comprese le fasi del flusso di lavoro e i documenti necessari.

Ogni PSS Breast Cancer IVD Kit è progettato per analizzare fino a 16 campioni su un'unica piastra.

Se vengono eseguiti più di 16 campioni nella stessa corsa di sequenziamento, eseguire un secondo PSS Breast Cancer IVD Kit ed è necessario procurarsi un Plasma-SeqSensei™ Extension IVD Kit.

Per i campioni sulla seconda piastra (campioni da 17 a 32) usare la PSS Index Primer Plate IND35 (piastra B) del PSS Extension IVD Kit anziché la PSS Index Primer Plate IND34 (piastra A) del PSS Breast Cancer IVD Kit originale.

Pericolo: Quando la stessa PSS Primer Plate (ad es. IND34) viene usata due volte nella stessa corsa, i risultati non saranno analizzabili.

Se occorre utilizzare due piastre, preparare sempre solo una piastra alla volta per ogni fase del flusso di lavoro prima di iniziare con l'altra piastra. Ogni piastra contiene un controllo positivo (Positive Control, PC) e un controllo "no template" (No Template Control, NTC).

9.1 UID PCR (PCR multiplex)

Nella PCR UID multiplex, tutte le regioni target sono co-amplificate e introducono sequenze univoche di codici a barre molecolari. Gli UID consentono una significativa riduzione del sottofondo, con conseguente altissima sensibilità della tecnologia Plasma-SeqSensei™.

Per PSS Breast Cancer IVD Kit, è possibile analizzare i campioni con una quantità di DNA compreso tra 4,3 e 86 ng/116 μ l. I campioni con un contenuto di DNA più elevato devono essere diluiti ad almeno 86 ng/116 μ l. I campioni con meno di 4,3 ng/116 μ l non sono stati convalidati.

Per ottenere risultati ottimali, raccomandiamo una **quantità di DNA di 43 ng/116 µl** per campione ove possibile.

Kit e reagenti necessari:

- PSS Breast Cancer Mpx A (tappo blu), Sysmex Inostics, n. ZR851013
- PSS Breast Cancer Mpx B (tappo giallo), Sysmex Inostics, n. ZR851014
- PSS Breast Cancer Positive Control (tappo rosso), Sysmex Inostics, n. ZR855006
- PSS No Template Control (tappo trasparente), Sysmex Inostics, n. ZR854002
- PSS Quantispike (tappo verde), Sysmex Inostics, n. ZR856001
- PSS PCR Master Mix v2, 2x (tappo nero), Sysmex Inostics, n. ZR850001

Diluizione di DNA:

Se la concentrazione di DNA supera la quantità massima di 86 ng/116 μ l, si consiglia di diluire il campione a **43 ng/116 \mul** in conformità ai seguenti calcoli:

Fattore di diluizione =
$$\frac{\textit{Concentrazione misurata in ng/116 } \mu l}{43 \, ng/116 \, \mu l}$$

Volume di eluato richiesto
$$[\mu l] = \frac{130 \ \mu l}{fattore \ di \ diluizione}$$

Con il volume totale di eluato di 130 µl (per i dettagli vedere ► capitolo 4.2 Guida di preparazione della purificazione del DNA circolante dal plasma del campione)

Volume del Buffer AVE $[\mu l] = 130 \mu l - volume di eluato richiesto$

I seguenti passaggi vengono eseguiti nell'area di preparazione del campione nel laboratorio pre-PCR.

Preparazione:

- Tutti i reagenti e i controlli congelati:
 - Scongelare
 - Agitare per 5 s
 - Centrifugare per 2 s
- Campioni di DNA da amplificare:
 - Scongelare
 - Agitare per 5 s
 - Centrifugare per 2 s
- Verificare il contenuto di DNA totale dei campioni.
 Se il contenuto totale di DNA è troppo alto (> 86 ng/116 μl), diluire il campione in base al calcolo riportato sopra.
- Etichettare le provette LoBind[®] da 1,5 ml per tutti i campioni che richiedono la diluizione.
- Etichettare chiaramente le catene di provette campione in base alla configurazione della piastra.
- Se si analizzano più di 16 campioni, eseguire sempre la configurazione della PCR UID per una piastra alla volta.

Configurazione della PCR UID:

Nota: Il DNA del campione di plasma isolato è sottoposto a una PCR multiplex in 5 replicati/pozzetti. I controlli positivi e negativi sono analizzati in singoli replicati (colonne 1 e 12).

Nota: I campioni vengono aggiunti alla piastra PCR UID colonna per colonna utilizzando una pipetta multicanale, come illustrato in Figura 5 (per la prevenzione della contaminazione). Le strisce di provette campione devono essere disposte parallelamente alla piastra PCR UID.

Nota: Evitare di miscelare i campioni durante il flusso di lavoro.

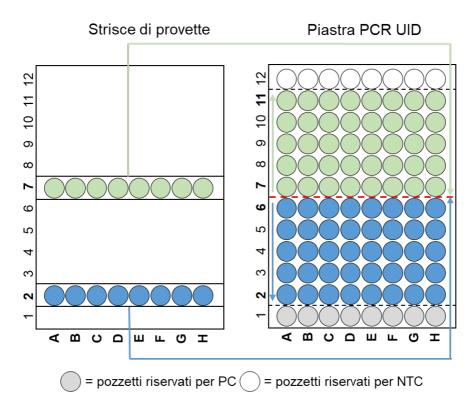


Figura 5: Schema di pipettamento usato quando si pipetta dalle strisce di provette su una piastra PCR UID

 Preparare la miscela di lavoro PCR UID per piastra in base alla Tabella 8: "Miscela di lavoro PCR UID". Miscelare pipettando su e giù 10 volte con la pipetta monocanale. Del volume della miscela di lavoro PCR UID necessario per PC e NTC si tiene conto nei calcoli (vedere Tabella 8).

Tabella 8: Schema di pipettamento della miscela di lavoro PCR UID per piastra

Numero di campioni (1 campione = 5 replicati), con il 15 % in eccesso	2	3	4	5	6	7	8	9
PSS PCR Master Mix v2, 2x [µl]	400	567	734	900	1.067	1.234	1.401	1.567
PSS Breast Cancer Mpx A [μΙ]	39	55	71	87	103	119	135	151
PSS Breast Cancer Mpx B [μΙ]	39	55	71	87	103	119	135	151
Quantispike [μl]	3,0	4,3	5,6	6,8	8,1	9,4	10,6	11,9
Volume finale (somma)	481,0	681,3	881,6	1.080,8	1.281,1	1.481,4	1.681,6	1.880,9

Numero di campioni (1 campione = 5 replicati), con il 15 % in eccesso	10	11	12	13	14	15	16
PSS PCR Master Mix v2, 2x [µl]	1.734	1.901	2.068	2.234	2.401	2.568	2.735
PSS Breast Cancer Mpx A [μΙ]	167	183	199	215	231	247	263
PSS Breast Cancer Mpx B [μΙ]	167	183	199	215	231	247	263
Quantispike [μl]	13,2	14,4	15,7	17,0	18,2	19,5	20,7
Volume finale (somma)	2.081,2	2.281,4	2.481,7	2.681,0	2.881,2	3.081,5	3.281,7

- 2. Aggiungere 34,8 µl di miscela di lavoro PCR UID ai pozzetti delle colonne 1 e 12 in base alla configurazione della piastra.
- 3. Aggiungere 23,2 µl di controllo positivo al pozzetto nella colonna 1 in base alla configurazione della piastra e miscelare il PC pipettando su e giù 10 volte.
 - Aggiungere 23,2 μ l di controllo negativo al pozzetto nella colonna 12 in base alla configurazione della piastra e miscelare il NTC pipettando su e giù 10 volte.
- 4. Trasferire un'aliquota di 187,5 μl di miscela di lavoro PCR UID per ciascun campione nella striscia di provette.
- 5. Aggiungere 125 μl di campione alla provetta corrispondente della striscia di provette e miscelare pipettando su e giù 10 volte.

- 6. Con la pipetta multicanale da 200 μl, trasferire un'aliquota di 58 μl di campione + miscela di lavoro in 5 pozzetti in base alla configurazione della piastra.
- 7. Sigillare la piastra con pellicola adesiva trasparente per PCR e centrifugare a 1.000 x g per 5 s.
- 8. Posizionare la piastra nel ciclatore per PCR. Avviare il ciclatore, accedere e avviare il programma di ciclo "UID BC PSS v1" entro 15 minuti.

Tabella 9: Profilo Tt (tempo-temperatura) di UID BC PSS_v1

Ciclatore per PCR: Veriti Impostazione volume: 50 µl

×	Coperchio riscaldato	Temperatura 96 °C coperchio				
N.	T [°C]	Ora [mm:ss]	Andare a n.	N. cicli		
1	98	02:00	N/D	1		
2	98	00:20	N/D	13		
3	63	01:30	N/D	13		
4	72	00:10	2	13		
5	72	02:10	N/D	1		
6	4	∞	N/D	1		

- 9. Se si analizzano più di 16 campioni, ripetere la procedura PCR UID con una seconda piastra PCR UID a partire dalla fase 1.
- 10. Conservare la piastra PCR UID nel laboratorio post-PCR a una temperatura compresa tra 2 °C e 8 °C fino a 14 giorni, tra -15 °C e -30 °C fino a 2 mesi o procedere direttamente alla purificazione della PCR UID (► capitolo 9.2 Purificazione della PCR UID. pagina 30/58).

9.2 Purificazione della PCR UID

Agencourt AMPure® XP Kit viene utilizzato per rimuovere i primer in eccesso, che interferirebbero nella successiva Index PCR.

Kit e reagenti necessari:

- Agencourt AMPure® XP, Beckman Coulter, n. A63881
- **Buffer EB** (tampone a eluizione), QIAGEN, n. 19086
- **Etanolo** (EtOH) ≥ 99,8 %, p.a.
- RNase and DNase-free distilled water

I seguenti passaggi vengono eseguiti nel laboratorio post-PCR.

Preparazione:

Se la piastra è stata conservata a una temperatura compresa tra 2 °C e 8 °C, eseguire il programma della PCR "PSS Remove Condensate_v1".

Tabella 10: Profilo Tt di PSS Remove Condensate_v1

Ciclatore per PCR: Veriti Impostazione volume: 50 μI

X	riscaldato		coperchio	105 °C	
N.	T [°C]	Ora [mm:ss]	Andare a n.	N. cicli	
1	4	02:00	N/D	1	

- Prima di rimuovere il sigillo, centrifugare la piastra a 1.000 x g per 5 s.
- Fornire un contenitore per i rifiuti liquidi.
- Preparare nuovo EtOH al 70 %. Invertire le provette 10 volte.

Raccomandazione: Preparare EtOH al 70 % durante l'incubazione nella fase 3.

Tabella 11: Preparazione di EtOH al 70 %

	Metà piastra (8 campioni)	Piastra intera (16 campioni)	
EtOH (≥ 99,8 %, p.a.)	9,1 ml	17,5 ml	
Acqua distillata	3,9 ml	7,5 ml	
Totale	13 ml	25 ml	

- Risospendere le biglie facendo rotolare il flacone orizzontalmente sulla superficie di lavoro. Ruotare lentamente, con una pausa dopo ogni giro di 180°, e attendere che il liquido coli. Ripetere fino a quando le biglie sono risospese in modo omogeneo e non vi sono più strisce visibili. Invertire il flacone di quando in quando.
- Aggiungere la soluzione basata su biglie AMPure[®] in un contenitore utilizzando una pipetta da 1 ml.

Tabella 12: Volume necessario delle biglie AMPure®

Metà piastra (8 campioni)	Piastra intera (16 campioni)					
4,4 ml	8,3 ml					

 Se occorre utilizzare due piastre per PCR UID, eseguire sempre il flusso di lavoro di purificazione della PCR UID per una piastra alla volta.

Procedura di purificazione:

 Utilizzare una pipetta multicanale per eseguire le seguenti fasi. Le piastre PCR UID e di eluato UID devono essere disposte parallelamente l'una all'altra e il pipettamento viene effettuato per colonna (non per fila, Figura 6).

Nota: Eseguire tutti i passaggi pipettando da sinistra a destra.

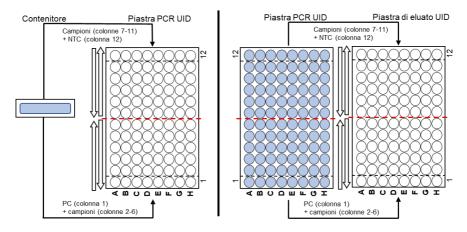


Figura 6: Schema di pipettamento usato quando si pipetta dal contenitore alla piastra PCR UID (sinistra) o alla piastra PCR UID (destra) in una piastra di eluato UID.

2. Aggiungere 81 μl di biglie AMPure[®] in ogni pozzetto della piastra PCR UID, miscelare pipettando lentamente su e giù 10 volte.

Nota: Risospendere le biglie AMPure[®] 3 volte nel contenitore prima di ogni aspirazione.

Nota: Assicurarsi che le biglie non si secchino mai.

- 3. Incubare la piastra PCR UID a temperatura ambiente per 10 minuti.
- 4. Posizionare la piastra PCR UID sulla piastra magnetica (Alpaqua) e incubare per 5 minuti.
- 5. Assicurarsi che tutte le biglie siano legate al magnete. Rimuovere attentamente il supernatante pipettando 134 μ l.

Nota: Non disturbare l'anello di biglie magnetiche separate. Spostare il puntale della pipetta sul fondo del pozzetto senza toccare la parete.

6. Trasferire EtOH al 70 % in un contenitore.

Tabella 13: Volume necessario di EtOH al 70 %

Metà piastra (8 campioni)	Piastra intera (16 campioni)				
13 ml	25 ml				

- 7. Aggiungere 100 µl di EtOH al 70 % ad ogni pozzetto senza risospendere. Incubare per 30 s.
- 8. Mantenere la piastra sul magnete. Rimuovere con cautela e smaltire 110 µl di EtOH.
- 9. Aggiungere 100 μ l di EtOH al 70 % ad ogni pozzetto senza risospendere. Incubare per 30 s.
- 10. Mantenere la piastra sul magnete. Rimuovere con cautela e smaltire 100 μl di EtOH.
- 11. Rimuovere l'EtOH residuo utilizzando la pipetta multicanale da 20 μl.
- 12. Rimuovere la piastra PCR UID dal magnete e lasciarla asciugare per 2 minuti.
- 13. Aggiungere il volume necessario di Buffer EB in un contenitore.

Tabella 14: Volume necessario di Buffer EB

Metà piastra (8 campioni)	Piastra intera (16 campioni)
7 ml	13 ml

- 14. Aggiungere 120 µl di Buffer EB ad ogni pozzetto per eluire il DNA e miscelare accuratamente su e giù almeno 10 volte.
- 15. Incubare la piastra PCR UID per 2 minuti a temperatura ambiente.
- 16. Posizionare la piastra PCR UID sul magnete e incubare per 1 minuto.
- 17. Trasferire accuratamente 110 μl di ogni pozzetto di eluato nella piastra di eluato UID, smaltire la piastra PCR UID.
- 18. Procedere direttamente con l'Index PCR o sigillare la piastra di eluato UID. Conservare la piastra a una temperatura compresa tra 2 °C e 8 °C fino a 7 giorni o tra -15 °C e -30 °C fino a 2 mesi.
- Se si analizzano più di 16 campioni, ripetere la procedura di purificazione della PCR UID con una seconda piastra PCR UID a partire dalla fase 2.

9.3 Index PCR

Viene eseguita l'Index PCR per amplificare i prodotti purificati PCR UID mentre si introducono i tag di indicizzazione (codici a barre del pozzetto) e gli adattatori di sequenziamento Illumina. Ogni PSS Breast Cancer IVD Kit contiene una PSS Index Primer Plate IND34 (piastra A) per analizzare fino a 16 campioni. Se vengono analizzati più di 16 campioni nella stessa corsa di sequenziamento, è possibile utilizzare una seconda PSS Index Primer Plate IND35 (piastra B) del Plasma-SeqSensei™ Extension IVD Kit.

Nota: <u>Non</u> utilizzare la stessa piastra due volte nella stessa corsa di sequenziamento. Utilizzare sempre due piastre diverse (IND34 + IND35/piastra A + piastra B).

I pozzetti delle PSS Index Primer Plate sono monouso. Le posizioni delle Index Primer Plates essiccate devono corrispondere a quelle della piastra PCR finale e alla configurazione della piastra nello strumento di pianificazione della corsa del software IVD Plasma-SeqSensei™ (Figura 7). Tenere conto di quali pozzetti sono già utilizzati. Quando si pianifica la corsa successiva, utilizzare le posizioni/i pozzetti degli indici restanti e trasferire le informazioni al software.

Plate A	1	2	3	4	5	6	7	8	9	10	11	12
Α	PC	Sample1					Sample2					NTC
В				Sample3	3				Sample	4		
C				Samples	5				Sample	6		
D				Sample?	7				Sample	8		
E												
F												
G												
Н												

Figura 7: Esempio di configurazione della piastra per l'Index PCR

Kit e reagenti necessari:

- PSS Index Primer Plate IND34 (piastra A), Sysmex Inostics, n. ZR852004
- opzionale: PSS Index Primer Plate IND35 (piastra B), Sysmex Inostics. n. ZR852005

- PSS PCR Master Mix v2, 2x (tappo nero), Sysmex Inostics, n. ZR850001
- Water, nuclease-free (tappo trasparente), Sysmex Inostics, n. ZR224006
- Buffer EB (tampone a eluizione), QIAGEN, n. 19086

I seguenti passaggi vengono eseguiti nel laboratorio post-PCR.

Preparazione:

- Fornire tutti i reagenti e lasciarli raggiungere la temperatura di lavoro.
- Etichettare tutti i materiali plastici necessari (provetta per miscela di lavoro Index PCR, 1 contenitore, piastra DIL, piastra Index PCR).
- Collocare il Buffer EB necessario in un contenitore e coprire fino a quando non diventa necessario.

Tabella 15: Volume necessario di Buffer EB

Metà piastra (8 campioni)	Piastra intera (16 campioni)				
5,5 ml	10 ml				

- Se la piastra è stata conservata a una temperatura compresa tra 2 °C e 8 °C, eseguire il programma della PCR "PSS Remove Condensate_v1".
- Se è stata conservata la piastra di eluato UID, centrifugarla a 1.000 x g per 5 s.
- Se si elaborano due piastre di eluato UID, eseguire sempre il flusso di lavoro dell'Index PCR per una sola piastra alla volta.

Piastra di preparazione della diluizione (DIL):

Nota: Utilizzare una pipetta multicanale per eseguire le seguenti fasi della preparazione della piastra DIL.

- Posizionare la piastra di eluato UID sul magnete e incubare per 1 minuto.
- 2. Aggiungere 99 μ l di Buffer EB per pozzetto alla piastra DIL in base alla configurazione della piastra.

 Trasferire 5 µl per pozzetto dalla piastra di eluato UID alla piastra DIL, sciacquare il puntale della pipetta pipettando su e giù per 3 volte.

Nota: Se la piastra è stata conservata, miscelare accuratamente dalla piastra di eluato UID pipettando su e giù per 5 volte.

- 4. Miscelare accuratamente pipettando 70 μl su e giù 10 volte.
- 5. Sigillare la piastra di eluato UID. Conservare la piastra con il volume residuo a una temperatura compresa tra 2 °C e 8 °C fino a 7 giorni o tra -15 °C e -30 °C fino a 2 mesi.

Preparazione della PSS Index Primer Plate:

- 6. Centrifugare la PSS Index Primer Plate a 1.000 x g per 5 s.
- 7. Preparare il numero necessario di pozzetti della PSS Index Primer Plate perforando il foglio in alluminio con puntali da 200 μl.

Nota: Verificare se sia stata usata la piastra corretta (IND34 o IND35/A o B) con l'orientamento corretto.

Preparazione dell'Index PCR:

- 8. Agitare tutti i reagenti per 5 s e centrifugarli per 2 s.
- 9. Preparare la miscela di lavoro dell'Index PCR in base alla seguente tabella. Agitare la miscela per 5 s e centrifugarla per 2 s.

Tabella 16: Schema di pipettamento della miscela di lavoro dell'Index PCR

Numero di campioni, con il 10% in eccesso	2	3	4	5	6	7	8	9
PSS PCR Master Mix v2, 2x [µl]	165	234	303	371	440	509	578	646
Water, nuclease-free [µl]	99	140	181	223	264	305	347	388
Volume finale (somma)	264	374	484	594	704	814	925	1.034

Numero di campioni, con il 10% in eccesso	10	11	12	13	14	15	16
PSS PCR Master Mix v2, 2x [µl]	715	784	853	921	990	1.059	1.128
Water, nuclease-free [µl]	429	470	512	553	594	635	677
Volume finale (somma)	1.144	1.254	1.365	1.474	1.584	1.694	1.805

Nota: Il volume per un PC e NTC è già incluso.

10. Aggiungere 20 µl di miscela di lavoro dell'Index PCR per pozzetto nella PSS Index Primer Plate.

Raccomandazione: Trasferire la miscela di lavoro nelle strisce di provette con la pipetta multicanale.

11. Aggiungere 5 μl di template dalla piastra DIL alla PSS Index Primer Plate e miscelare accuratamente pipettando su e giù 10 volte fino a risospendere i reagenti. Utilizzare una pipetta multicanale. Smaltire la piastra DIL dopo l'uso.

Nota: Controllare visivamente il corretto orientamento della piastra DIL e della PSS Index Primer Plate per evitare che il campione si mescoli.

Nota: Verificare se sono visibili punti blu sul fondo dei pozzetti. Un punto blu indica una cattiva risospensione dei reagenti. Se sono ancora visibili punti blu, ripetere la risospensione, pipettando su e giù 10 volte fino a quando non sono più visibili punti blu e il liquido è diventato blu.

- 12. Sigillare la PSS Index Primer Plate con pellicola adesiva trasparente per PCR e centrifugare a 1.000 x g per 5 s.
- 13. Se si usa solo una parte della PSS Index Primer Plate, trasferirne l'intero volume in una nuova piastra per PCR.

Nota: Controllare il corretto orientamento della PSS Index Primer Plate e della nuova piastra per PCR per evitare che il campione si mescoli.

Raccomandazione: Utilizzare 2 pipette multicanale da 20 μl anziché 1 pipetta multicanale da 200 μl.

- 14. Sigillare la piastra per PCR con pellicola adesiva trasparente per PCR e centrifugare a 1.000 x g per 5 s.
- 15. Sigillare i pozzetti utilizzati della PSS Index Primer Plate (applicabile solo se questa non viene smaltita) e conservarla a una temperatura compresa tra 2 °C e 8 °C al buio.
- 16. Avviare la PCR con il programma "IDX BC PSS_v1" entro 15 min.

Tabella 17: Profilo Tt di IDX BC PSS_v1

Ciclatore per PCR: Veriti
Impostazione volume: 25 µl
— Coperchio

\boxtimes	riscaldato		coperchio:	96 °C
N.	T [°C]	Ora [mm:ss]	Andare a n.	N. cicli
1	98	00:30	N/D	1
2	98	00:10	N/D	20
3	65	00:10	N/D	20
4	72	00:10	2	20
5	72	05:00	N/D	1
6	4	∞	N/D	1

Temperatura

- 17. Se si analizzano più di 16 campioni, ripetere la procedura dell'Index PCR con una seconda piastra di eluato UID a partire dalla fase 1.
- 18. Dopo la PCR, centrifugare le piastre dell'Index PCR a 1.000 x g per 5 s. Conservare le piastre a una temperatura compresa tra 2 °C e 8 °C fino a 7 giorni, tra -15 °C e -30 °C fino a 2 mesi o procedere direttamente alla purificazione dell'Index PCR.

9.4 Purificazione dell'Index PCR

Importante: Questa fase riunisce tutti i pozzetti dei campioni e di controllo di una piastra in un'unica libreria. Se sono state preparate due piastre (IND34 e IND35/piastra A e piastra B), unire solo i campioni e i controlli di una piastra per ottenere due librerie di sequenziamento. Inoltre, la purificazione rimuove dNTP, primer, dimeri di primer e sali che ostacolerebbero il successivo sequenziamento.

Kit e reagenti necessari:

- Agencourt AMPure® XP, Beckman Coulter, A63881
- QIAquick® PCR Purification Kit, QIAGEN, n. 28106
- Buffer PB, QIAGEN, n. 19066
- **Etanolo** (EtOH) ≥ 99,8 %, p.a.
- RNase and DNase-free distilled water

I seguenti passaggi vengono eseguiti nel laboratorio post-PCR.

Preparazione:

- Se la piastra è stata conservata a una temperatura compresa tra 2 °C e 8 °C, eseguire il programma della PCR "PSS Remove Condensate v1".
- Etichettare tutti i materiali plastici necessari (provetta di diluizione EtOH, provette di diluizione PB, colonne di centrifugazione, provette di eluato QIAquick[®], provette di eluato Index).
- Preparare un contenitore per i rifiuti liquidi.
- Preparare nuovo EtOH al 70 % in base alla tabella riportata di seguito. Invertire 10 volte.

Tabella 18: Preparazione di EtOH al 70 %

Reagente	Volume
EtOH ≥ 99,8 %, p.a. [ml]	2,8
Acqua distillata [ml]	1,2
Volume necessario [ml]	4,0

- Prima di rimuovere il sigillo, centrifugare la piastra dell'Index PCR a 1.000 x g per 5 s.
- Raccogliere l'intero liquido di tutti i pozzetti (campioni e controlli) da una piastra con una pipetta da 200 µl impostata su 30 µl in un contenitore appropriato.

Nota: Se si usa una pipetta multicanale, riunire prima tutti i pozzetti per colonna in una fila di una nuova striscia di piastre per PCR. Trasferire quindi il contenuto di ciascun pozzetto in un contenitore idoneo con una pipetta monocanale.

 Se occorre utilizzare due piastre per l'Index PCR, eseguire sempre la purificazione dell'Index PCR per una sola piastra alla volta.

Nota: Utilizzare una pipetta monocanale per le seguenti fasi in questo protocollo.

Prima purificazione con QIAquick®:

- 1. Per la purificazione con QIAquick® PCR Purification Kit, fare riferimento al protocollo "QIAquick PCR Purification using a Vacuum Manifold" nel manuale del produttore. Le differenze nella manipolazione sono descritte di seguito.
- 2. Per prima cosa, aggiungere il volume calcolato (vedere Tabella 19) di Buffer PB alla rispettiva provetta, agitare per 3 s e centrifugare a 500 x g per 2 s.

Tabella 19: Calcolo del volume necessario di Buffer EB

Reagente	Per pozzetto	x pozzetti
Volume del campione [µl]	25	
Buffer PB [µl]	125	
Volume totale [µl]	150	

3. Eseguire le seguenti fasi della purificazione PCR in base alle istruzioni descritte nel manuale QIAGEN.

Nota: Il massimo volume di carico della colonna è di 800 μl. Per volumi del campione aggregati superiori a 800 μl, caricare nuovamente.

Nota: Controllare visivamente in ogni fase che il volume corretto sia applicato alla colonna e che il liquido completo sia passato attraverso il filtro.

Nota: In caso di colonne intasate, fare riferimento alla guida per la risoluzione dei problemi nel manuale QIAGEN.

- 4. Per l'eluizione del DNA, collocare una colonna QIAquick[®] in una provetta LoBind[®] pulita da 1,5 ml.
- 5. Aggiungere 50 μl di Buffer EB al centro della membrana QlAquick® e incubare per 1 min. a TA prima dell'ultima fase di centrifugazione.

Seconda purificazione con le biglie AMPure®:

- 6. Trasferire 45 µl di eluato in una nuova provetta LoBind[®]. Smaltire la precedente.
- 7. A) Quando si utilizza il flacone originale AMPure[®], risospendere le biglie facendo rotolare il flacone orizzontalmente sulla superficie di lavoro. Ruotare lentamente, con una pausa dopo ogni giro di 180°, e attendere che il liquido coli. Ripetere fino a quando le biglie sono risospese in modo omogeneo.
 - B) Quando si utilizzano aliquote di biglie AMPure®, miscelare le biglie invertendole almeno 10 volte. Assicurarsi che le biglie siano completamente risospese.
- 8. Aggiungere 40 μ l di biglie AMPure[®] all'eluato, agitare per 10 s e centrifugare per 3 s.
- 9. Incubare per 5 min. a TA.
- Aprire la provetta, inserirla nel DynaMag-2 e incubare per 2 minuti a TA.

Le seguenti fasi (da 11 a 15) vengono eseguite mentre le provette sono nel rack magnetico:

11. Con una pipetta da 200 μl, impostarla su 100 μl, rimuovere il surnatante e smaltirlo.

Nota: Sollevare la provetta di circa 1 cm e premere il fondo completamente contro il magnete per assicurarsi che tutte le biglie siano fissate.

- 12. Aggiungere 500 µl di EtOH al 70 % e incubare per 30 s a TA.
- 13. Rimuovere il surnatante e smaltirlo.
- 14. Aggiungere 500 µl di EtOH al 70 % e incubare per 30 s a TA. Durante l'incubazione, ruotare la provetta intorno all'asse verticale di 180° per assicurare una miscelazione efficiente. Ruotare lentamente in senso inverso al più presto dopo 5 s.
- 15. Rimuovere tutto il surnatante e smaltirlo. Rimuovere l'EtOH residuo usando la pipetta da 20 μl.
- 16. Rimuovere la provetta dal DynaMag-2 e lasciarla asciugare per 2 minuti a TA con il coperchio aperto.
- 17. Aggiungere 15 μ l di Buffer EB e risospendere completamente la miscela di biglie agitando per 10 s. Centrifugare per 3 s e incubare per 1 min. a TA.
- 18. Aprire la provetta, inserirla nel DynaMag-2 e incubare per 1 minuto a TA.
- 19. Utilizzando una pipetta da 20 μl, impostare su 20 μl per trasferire l'intero surnatante nella provetta "Index eluate".

Nota: Sollevare la provetta di circa 1 cm e premere il fondo completamente contro il magnete per assicurarsi che tutte le biglie siano fissate.

- 20. Smaltire la provetta etichettata con l'eluato QIAquick®.
- 21. Conservare la provetta "Index eluate" a una temperatura compresa tra 2 °C e 8 °C fino a 7 giorni, a una temperatura compresa tra

- -15 °C e -30 °C fino a 2 mesi o procedere direttamente alla quantificazione sul Bioanalyzer.
- 22. Se si analizzano più di 16 campioni, ripetere la procedura di purificazione dell'Index PCR con una seconda piastra Index PCR a partire dalla fase 2.

9.5 CQ libreria (Bioanalyzer)

La procedura CQ libreria viene eseguita utilizzando un Bioanalyzer per controllare in ogni libreria i prodotti collaterali e la determinazione della dimensione media. Per ogni libreria, le quantificazioni dovrebbero essere eseguite in tre replicati.

PSS Breast Cancer IVD Kit è stato sviluppato con l'ausilio di Bioanalyzer DNA 1000 Kit di Agilent.

Kit e reagenti necessari:

- **DNA 1000 Kit**, Agilent, n. 5067-1504
- **Buffer EB** (tampone a eluizione), QIAGEN, n. 19086
- RNase and DNase-free distilled water

I seguenti passaggi vengono eseguiti nel laboratorio post-PCR.

Preparazione del Bioanalyzer:

Per tutte le fasi, fare riferimento al manuale del Bioanalyzer Agilent.

Preparazione della diluizione del Bioanalyzer (BA_DIL):

1. Calcolare i volumi necessari per BA_DIL:

Fattore di diluizione =
$$\frac{quantità totale di DNA}{43}$$

con quantità totale di DNA di tutti i campioni analizzati in in $ng/116 \mu l$ (misurato utilizzando QubitTM, vedere \blacktriangleright capitolo 4.3 Quantificazione del campione (QubitTM) della guida alla preparazione del campione)

Buffer EB
$$[\mu l] = (3 * fattore\ di\ diluizione) - 3 \mu l$$

BA_DIL $[\mu l] = 3 \mu l\ eluato\ Index + X \mu l\ Buffer\ EB$

Diluire l'eluato degli indici in una nuova provetta in base al calcolo.
 Agitare brevemente e centrifugare per 3 s. Conservare l'eluato degli
 indici residuo a una temperatura compresa tra 2 °C e 8 °C fino a
 7 giorni o tra -15 °C e -30 °C fino a 2 mesi.

Nota: Assicurarsi che siano disponibili almeno 10 μl di volume totale di BA_DIL.

Preparazione del Labchip:

 Per tutte le fasi, fare riferimento al manuale del Bioanalyzer Agilent.

Nota: La misurazione del campione deve essere eseguita in tre replicati tecnichi.

Nota: BA_DIL è stabile a una temperatura compresa tra 2 °C e 8 °C fino a 7 giorni o tra -15 °C e -30 °C fino a 2 mesi.

Analisi dei dati:

3. Verificare che il profilo del [Ladder Plot] (tracciato del ladder) sia simile a Figura 8 di seguito e contenga 13 picchi di cui il più basso è a 15 bp e il più alto a 1.500 bp (sono i marcatori che saranno presenti in ogni campione letto) con una linea di base piatta (vedere Figura 8).

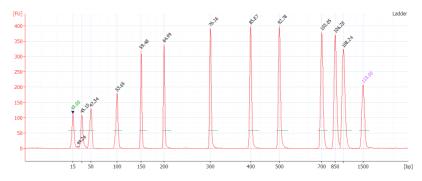


Figura 8: Elettroferogramma del ladder

Fare doppio clic sull'elettroferogramma appartenente al pozzetto 1
e selezionare la scheda [Peak Table] (Tabella dei picchi) (vedere
Figura 9).

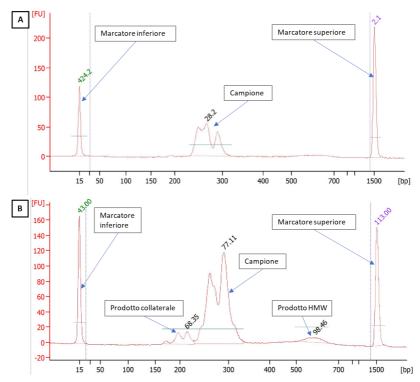


Figura 9: Elettroferogrammi campione. (A) un elettroferogramma ottimale senza prodotti collaterali, (B) un elettroferogramma esemplare con prodotti collaterali (ad esempio dimero del primer e gDNA (prodotto HMW)).

- 5. Selezionare [Manual Integration] (Integrazione manuale) (facendo clic con il pulsante destro del mouse nell'elettroferogramma.
- Utilizzare le linee blu per delineare tutti i picchi visivi, vale a dire il prodotto campione, il dimero del primer (prodotto collaterale) e il prodotto ad alto peso molecolare (High Molecular Weight, HMW) lungo la linea dello zero (illustrato in Figura 9B).

Nota: Utilizzare il tasto "Ctrl" per separare le estremità delle linee blu dalla linea rossa. Se una linea è selezionata, rimuoverla facendo clic con il tasto destro del mouse sul menu e selezionando [Remove Peak] (Rimuovi picco) con il tasto sinistro. Inserire altre linee blu in qualsiasi posizione con clic destro su [Add Peak] (Aggiungi picco).

- 7. Utilizzando [Peak Description] (Descrizione picco) (), selezionare [Peak Molarity] (Molarità di picco) per mostrare la rispettiva molarità per ogni picco.
- 8. Salvare il file.
- 9. Ripetere le fasi da 4 a 8 per i restanti pozzetti di ogni replicato.
- Calcolare media, deviazione standard e coefficiente di variazione (CV) della somma di molarità di tutti i prodotti in base alle triplici misurazioni.

Criteri di accettazione e rifiuto:

- Controllo qualità del DNA: se la somma di prodotto, dimero del primer e alto peso molecolare è < 2,0 nmol/l, la concentrazione del DNA è troppo bassa per il sequenziamento.
- Criterio di accettazione del <u>rapporto segnale-rumore (S/N)</u>:
 ≥ 90 %

$$S/N$$
 [%] = $\frac{molarità\ del\ prodotto\ specifico}{somma\ del\ prodotto\ specifico, laterale\ e\ prodotto\ HMW}*100$

 Criterio di accettazione del <u>controllo di precisione</u>: Coefficiente di variazione della somma di molarità di tutti i prodotti ≤ 10 %.

$$\textbf{\textit{Coefficente di variazione}} \ [\%] = \frac{\textit{deviazione standard}}{\textit{media}} * 100$$

Nota: Se il rapporto segnale-rumore o il coefficiente di variazione non funziona a causa di un outlier, quel valore può essere escluso dai calcoli del campione.

Nota: Se uno o più criteri non raggiungono l'obiettivo previsto, preparare un nuovo BA DIL e ripetere la corsa del Bioanalyzer.

9.6 Sequenziamento su Illumina NextSeq[™] 500/550

Il sequenziamento delle librerie viene eseguito utilizzando un Illumina NextSeq™ 500 o 550 come descritto nelle Istruzioni per l'uso fornite da Illumina.

Kit e reagenti necessari:

- NextSeq[™] 500/550 Mid Output Kit v2.5 (150 cicli), Illumina,
 n. 20024904
 - ≤ 377 ng di quantità totale di DNA (basato sulla misurazione Qubit[™] ► capitolo *4.3 Quantificazione del campione (Qubit*™) della guida alla preparazione del campione)
- **NextSeq™ 500/550 High Output Kit v2.5 (150 cicli)**, Illumina, n. 20024907
 - ≤ 1.304 ng di quantità totale di DNA (basato sulla misurazione Qubit[™] ► capitolo *4.3 Quantificazione del campione (Qubit*[™]) della guida alla preparazione del campione)
- Idrossido di sodio (NaOH), 1 M
- Soluzione di idrocloruro Trizma® pH 7,0, 1 M
- **Buffer EB** (tampone a eluizione), QIAGEN, n. 19086
- RNase and DNase-free distilled water

I seguenti passaggi vengono eseguiti nel laboratorio post-PCR.

Preparazione dei campioni (2 nM concentrazione di partenza della libreria) per il sequenziamento:

1. Calcolare il volume totale richiesto di una libreria a 2 nM:

Volume totale
$$[\mu l] = \frac{3 \mu l BA_DIL * Concentrazione_{libreria} in nM}{2 nM}$$

2. Calcolare il volume necessario di Buffer EB:

$$Volume_{Buffer EB} [\mu l] = Volume totale - 3 \mu l BA_DIL$$

3. Preparare una diluizione della libreria di 2 nM per ogni libreria in base al seguente calcolo:

Diluizione della libreria di 2 nM = $3 \mu l BA_DIL + Volume_{Buffer EB}$

Nota: Non pipettare < 3 µl.

Nota: Se il volume di diluizione di 2 nM è < 10 µl, regolare il volume totale.

4. Opzionale: Se sono state elaborate due piastre, riunire in pool le due diluizioni separate di libreria da 2 nM in una Library Pool Mix finale di 10 µl in base alle seguenti equazioni:

$$egin{aligned} ext{\it Quantit\`a di DNA}_{totale} \ &= \sum_{} ext{\it Quantit\`a di DNA}_{piastraA} \ &+ \sum_{} ext{\it Quantit\`a di DNA}_{piastraB} \end{aligned}$$

$$+\sum$$
 Quantità di DNA_{piastraB}

$$extbf{Volume}_{ extbf{piastraA}} = rac{10 \ \mu l}{Quantit\`{a} \ di \ DNA_{totale}} * Quantit\`{a} \ di \ DNA_{piastraA}$$

$$extbf{Volume}_{ extit{piastraB}} = rac{10 \; \mu l}{Quantit\`{a} \; di \; DNA_{totale}} * Quantit\`{a} \; di \; DNA_{piastraB}$$

Nota: Pipettare esclusivamente i volumi compresi negli intervalli accettati delle pipette disponibili. Se occorre pipettare volumi inferiori, aumentare invece il volume totale della Library Pool Mix finale.

5. Eseguire le seguenti fasi (denaturazione della libreria e diluizione della libreria denaturata a 20 pM) in base al manuale di Illumina (NextSeq[™] 500 e 550 Sequencing Systems Denature and Dilute Libraries Guide, protocollo A: Standard Normalization Method (documento n. 15048776 v16 o successiva).

6. Diluire la libreria (in pool) alla concentrazione di carico in base al kit di sequenziamento scelto:

Tabella 20: Volumi necessari per il sequenziamento

	Mid Output Kit	High Output Kit
Concentrazione finale	1,0 pM	1,1 pM
Input libreria	65 μl	71 µl
Tampone HT1	1.235 µl	1.229 µl

 Avviare la corsa di sequenziamento in base al protocollo Illumina (Guida al sistema NextSeq™ 550, documento n. 15069765v06) utilizzando le seguenti "Run Parameter Settings" (Impostazioni dei parametri di corsa):

Tabella 21: Parametri di sequenziamento

Tipo Read	Lettura singola
-----------	-----------------

	Read 1	Index 1	Index 2*
Lunghezza di lettura	148	10	10

^{*} La lunghezza di lettura dell'indice 2 sarà inclusa solo con l'uso di due piastre nella stessa corsa di sequenziamento.

Fase successiva

Per procedere con l'analisi dei dati di sequenziamento, fare riferimento alla IFU del software PSS IVD (modulo di analisi dei dati).

10 Assistenza tecnica

Se si verificano problemi durante il flusso di lavoro del Plasma-SeqSenseiTM Breast Cancer IVD Kit, contattare il supporto Sysmex locale per assistenza.

Ti No

Nota: Le Istruzioni per l'uso sono disponibili in diverse lingue online all'indirizzo <u>www.sysmex-inostics.com</u>.

11 Caratteristiche delle prestazioni

11.1 Sensibilità analitica

La valutazione del limite di rilevazione (Limit of Detection, LoD) è stata effettuata in base alle specifiche indicate nella linea guida *CLSI EP17-A2*.

L'analisi includeva inserzioni, delezioni, sostituzioni e delezioni-inserzioni.

Il cutoff derivato dal limite di rilevazione è 6 MM.

Analita (MM)	Tasso di successo in % (n=108)	LoD95
20	100	
10	100	
5	95,4	4,98
2,5	82,4	(CI95 4,05 MM – 6,56 MM)
1,25	49,1	
0,625	36,1	

11.2 Specificità analitica

Il design è stato verificato in silico usando l'analisi BLAST a fronte della possibile reattività incrociata ed è stato confermato come altamente specifico. Le sequenze off-target includevano il genoma umano e le sequenze di DNA pubblicamente disponibili di tipici microrganismi/virus trasportati dal sangue come *Escherichia coli*, *Bacillus subtilis*, *Pseudomonas aeruginosa*, *Aspergillus niger*, Cytomegalovirus, virus di Epstein-Barr, HIV e virus dell'epatite C.

11.3 Precisione/Ripetibilità

La valutazione della precisione è stata effettuata in base alle specifiche indicate nella linea guida *CLSI EP05-A3*.

La precisione qualitativa è > 99 %.

La ripetibilità quantitativa è < 10 % (coefficiente di variazione max.) e la precisione intermedia è < 15 % a \geq 20 MM.

MM target	Ripetibilità (coefficiente di variazione max. in %)	Precisione intermedia
500	2,54	13,84
100	5,99	13,10
50	7,76	14,15
20	5,65	14,02

11.4 Intervallo di misurazione/Linearità

La determinazione dell'intervallo lineare sulla quantità di DNA è stata effettuata in base alle specifiche indicate nella linea guida *CLSI EP06-A*.

Il flusso di lavoro PSS mostra linearità nell'intervallo di quantità di DNA dell'analisi (da 4,3 a 86 ng per campione).

11.5 Sostanze interferenti

La determinazione delle sostanze interferenti è stata effettuata in base alle specifiche indicate nella linea quida *CLSI EP07-A2*.

È stata confermata la solidità del flusso di lavoro PSS contro le comuni sostanze interferenti. La presenza di emoglobina (\leq 2 g/l), bilirubina (\leq 200 mg/l), trigliceridi (\leq 15 g/l), melanina (\leq 0,2 µg/l) ed etanolo (\leq 86,8 mmol/l) non ha alcun impatto sulla validità e sui risultati dei test.

12 Glossario e terminologia

Termine	Definizione
bp	Coppia di basi
BA_Dil	Diluizione del Bioanalyzer
CDx	Diagnostica complementare
cfDNA	DNA libero circolante
COSMIC	Catalogo di mutazioni somatiche nel cancro
ctDNA	DNA tumorale circolante
dbSNP	Polimorfismo a singolo nucleotide
dNTP	Trifosfato deossiribonucleotide
DNA	Acido desossiribonucleico
EB	Tampone a eluizione
EDTA	Acido etilendiamminotetraacetico
EtOH	Etanolo
gDNA	DNA genomico
HMW	Alto peso molecolare
IDX	Indice
IFU	Istruzioni per l'uso
MAF	Frazione di allele mutante
MM	Molecole mutanti
Мрх	Miscela primer multiplex
NaOH	Idrossido di sodio
NGS	Sequenziamento in parallelo
NTC	No Template Control

Termine	Definizione
PC	Positive Control
PCR	Reazione a catena della polimerasi
PSS	Plasma-SeqSensei™
CQ	Controllo qualità
RNA	Acido ribonucleico
TA	Temperatura ambiente
SNV	Variante a singolo nucleotide
UID	Identificatore univoco

13 Bibliografia

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12. Erratum in: CA Cancer J Clin. 2020 Jul;70(4):313. PMID: 30207593.
- Moo TA, Sanford R, Dang C, Morrow M. Overview of Breast Cancer Therapy. PET Clin. 2018 Jul;13(3):339-354. doi: 10.1016/j.cpet.2018.02.006. PMID: 30100074; PMCID: PMC6092031.
- Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, Zehir A, Weigelt B, Dawson SJ, Arcila ME, Berger MF, Tsui DW. The value of cell-free DNA for molecular pathology. J Pathol. 2018 Apr;244(5):616-627. doi: 10.1002/path.5048. Epub 2018 Mar 12. PMID: 29380875; PMCID: PMC6656375.
- 4) Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5. doi: 10.1073/pnas.1105422108. Epub 2011 May 17. PMID: 21586637; PMCID: PMC3111315.
- 5) Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019 Mar 18;17:100087. doi: 10.1016/j.bdq.2019.100087. PMID: 30923679; PMCID: PMC6425120.
- Fiste O, Liontos M, Koutsoukos K, Terpos E, Dimopoulos MA, Zagouri F. Circulating tumor DNA-based predictive biomarkers in breast cancer clinical trials: a narrative review. Ann Transl Med. 2020 Dec;8(23):1603. doi: 10.21037/atm-20-1175. PMID: 33437802; PMCID: PMC7791253.
- 7) [Online] https://cancer.sanger.ac.uk/cosmic.
- 8) Keup C, Benyaa K, Hauch S, Sprenger-Haussels M, Tewes M, Mach P, Bittner AK, Kimmig R, Hahn P, Kasimir-Bauer S. Targeted deep sequencing revealed variants in cell-free DNA of hormone receptor-positive metastatic breast cancer patients. Cell Mol Life Sci. 2020 Feb;77(3):497-509. doi: 10.1007/s00018-019-03189-z. Epub 2019 Jun 28. PMID: 31254045; PMCID: PMC7010653.
- Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O'Leary B, Kilburn L, Howarth K, Epstein M, Green E, Rosenfeld N, Ring A, Johnston S, Turner N. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol. 2018 Jan 1;29(1):145-153. doi: 10.1093/annonc/mdx483. PMID: 29045530; PMCID: PMC6264798.

14 Diritti d'autore e marchi commerciali

È vietata la riproduzione non autorizzata del contenuto, totale o parziale, di questo manuale in assenza della previa autorizzazione scritta di Sysmex Corporation, Giappone.

Plasma-SeqSensei™ è un marchio commerciale di Sysmex Corporation, Giappone.

Tutti gli altri marchi commerciali, nomi e prodotti sono, anche quando non specificamente contrassegnati come tali, marchi o marchi registrati dei rispettivi proprietari.

Sysmex Inostics GmbH
Falkenried 88
20251 Hamburg, Germania
www.sysmex-inostics.com

© 2022 Sysmex Inostics Tutti i diritti riservati. Febbraio 2022 ZR150547.R1